Source code for objectnat.methods.noise.noise_simulation

import concurrent.futures
import math
import multiprocessing
import time

import geopandas as gpd
import pandas as pd
from shapely import GEOSException
from shapely.geometry import GeometryCollection, MultiPolygon, Point, Polygon
from shapely.ops import polygonize, unary_union
from tqdm import tqdm

from objectnat import config
from objectnat.methods.noise.noise_reduce import dist_to_target_db, green_noise_reduce_db
from objectnat.methods.noise.noise_simulation_simplified import _eval_donuts_gdf
from objectnat.methods.utils.geom_utils import (
    gdf_to_circle_zones_from_point,
    get_point_from_a_thorough_b,
    polygons_to_multilinestring,
)
from objectnat.methods.visibility.visibility_analysis import get_visibility_accurate

logger = config.logger

MAX_DB_VALUE = 194


[docs] def simulate_noise( source_points: gpd.GeoDataFrame, obstacles: gpd.GeoDataFrame, source_noise_db: float = None, geometric_mean_freq_hz: float = None, **kwargs, ): """ Simulates noise propagation from a set of source points considering obstacles, trees, and environmental factors. Args: source_points (gpd.GeoDataFrame): A GeoDataFrame with one or more point geometries representing noise sources. Optionally, it can include 'source_noise_db' and 'geometric_mean_freq_hz' columns for per-point simulation. obstacles (gpd.GeoDataFrame): A GeoDataFrame representing obstacles in the environment. If a column with sound absorption coefficients is present, its name should be provided in the `absorb_ratio_column` argument. Missing values will be filled with the `standart_absorb_ratio`. source_noise_db (float, optional): Default noise level (dB) to use if not specified per-point. Decibels are logarithmic units used to measure sound intensity. A value of 20 dB represents a barely audible whisper, while 140 dB is comparable to the noise of jet engines. geometric_mean_freq_hz (float, optional): Default frequency (Hz) to use if not specified per-point. This parameter influences the sound wave's propagation and scattering in the presence of trees. Lower frequencies travel longer distances than higher frequencies. It's recommended to use values between 63 Hz and 8000 Hz; values outside this range will be clamped to the nearest boundary for the sound absorption coefficient calculation. Keyword Args: absorb_ratio_column (str, optional): The name of the column in the `obstacles` GeoDataFrame that contains the sound absorption coefficients for each obstacle. Default is None. If not specified, all obstacles will have the `standart_absorb_ratio`. standart_absorb_ratio (float, optional): The default sound absorption coefficient to use for obstacles without specified values in the `absorb_ratio_column`. Default is 0.05, which is a typical value for concrete walls. trees (gpd.GeoDataFrame, optional): A GeoDataFrame containing trees or dense vegetation along the sound wave's path. Trees will scatter and absorb sound waves. tree_resolution (int, optional): A resolution parameter for simulating tree interactions with sound waves. Recommended values are between 2 and 16, with higher values providing more accurate simulation results. air_temperature (float, optional): The air temperature in degrees Celsius. The recommended range is from 0 to 30 degrees Celsius, as temperatures outside this range will be clipped. Temperature affects the sound propagation in the air. target_noise_db (float, optional): The target noise level (in dB) for the simulation. Default is 40 dB. Lower values may not be relevant for further analysis, as they are near the threshold of human hearing. db_sim_step (float, optional): The step size in decibels for the noise simulation. Default is 1. For more precise analysis, this can be adjusted. If the difference between `source_noise_db` and `target_noise_db` is not divisible by the step size, the function will raise an error. reflection_n (int, optional): The maximum number of reflections (bounces) to simulate for each sound wave. Recommended values are between 1 and 3. Larger values will result in longer simulation times. dead_area_r (float, optional): A debugging parameter that defines the radius of the "dead zone" for reflections. Points within this area will not generate reflections. This is useful to prevent the algorithm from getting stuck in corners or along building walls. use_parallel (bool, optional): Whether to use ProcessPool for task distribution or not. Default is True. Returns: gpd.GeoDataFrame: A GeoDataFrame containing the noise simulation results, including noise levels and geometries of the affected areas. Each point's simulation results will be merged into a single GeoDataFrame. """ # Obstacles args absorb_ratio_column = kwargs.get("absorb_ratio_column", None) standart_absorb_ratio = kwargs.get("standart_absorb_ratio", 0.05) # Trees args trees = kwargs.get("trees", None) tree_res = kwargs.get("tree_resolution", 4) # Simulation conditions air_temperature = kwargs.get("air_temperature", 20) target_noise_db = kwargs.get("target_noise_db", 40) # Simulation params db_sim_step = kwargs.get("db_sim_step", 1) reflection_n = kwargs.get("reflection_n", 3) dead_area_r = kwargs.get("dead_area_r", 5) # Use paralleling use_parallel = kwargs.get("use_parallel", True) # Validate optional columns or default values use_column_db = False if "source_noise_db" in source_points.columns: if (source_points["source_noise_db"] > MAX_DB_VALUE).any(): raise ValueError( f"One or more values in 'source_noise_db' column exceed the physical limit of {MAX_DB_VALUE} dB." ) if source_points["source_noise_db"].isnull().any(): raise ValueError(f"Column 'source_noise_db' contains missing (NaN) values") use_column_db = True use_column_freq = False if "geometric_mean_freq_hz" in source_points.columns: if source_points["geometric_mean_freq_hz"].isnull().any(): raise ValueError(f"Column 'geometric_mean_freq_hz' contains missing (NaN) values") use_column_freq = True if not use_column_db: if source_noise_db is None: raise ValueError( "Either `source_noise_db` must be provided or the `source_points` must contain a 'source_noise_db' column." ) if source_noise_db > MAX_DB_VALUE: raise ValueError( f"source_noise_db ({source_noise_db} dB) exceeds the physical limit of {MAX_DB_VALUE} dB in air." ) if not use_column_freq: if geometric_mean_freq_hz is None: raise ValueError( "Either `geometric_mean_freq_hz` must be provided or the `source_points` must contain a 'geometric_mean_freq_hz' column." ) if not use_column_db and not use_column_freq and len(source_points) > 1: logger.warning( "`source_noise_db` and `geometric_mean_freq_hz` will be used for all points. Per-point simulation parameters not found." ) original_crs = source_points.crs source_points = source_points.copy() source_points = source_points.copy() if len(obstacles) > 0: obstacles = obstacles.copy() local_crs = obstacles.estimate_utm_crs() obstacles.to_crs(local_crs, inplace=True) obstacles.geometry = obstacles.geometry.simplify(tolerance=1) source_points.to_crs(local_crs, inplace=True) else: local_crs = source_points.estimate_utm_crs() source_points.to_crs(local_crs, inplace=True) source_points.reset_index(drop=True) source_points.geometry = source_points.centroid # Simplifying trees if trees is not None: trees = trees.copy() trees.to_crs(local_crs, inplace=True) trees.geometry = trees.geometry.simplify(tolerance=1) else: trees = gpd.GeoDataFrame() if absorb_ratio_column is None: obstacles["absorb_ratio"] = standart_absorb_ratio else: obstacles["absorb_ratio"] = obstacles[absorb_ratio_column].fillna(standart_absorb_ratio) obstacles = obstacles[["absorb_ratio", "geometry"]] # creating initial task and simulating for each point task_queue = multiprocessing.Queue() dead_area_dict = {} for ind, row in source_points.iterrows(): source_point = row.geometry local_db = row["source_noise_db"] if use_column_db else source_noise_db local_freq = row["geometric_mean_freq_hz"] if use_column_freq else geometric_mean_freq_hz # calculating layer dist and db values dist_db = [(0, local_db)] cur_db = local_db - db_sim_step while cur_db > target_noise_db - db_sim_step: if cur_db - db_sim_step < target_noise_db: cur_db = target_noise_db max_dist = dist_to_target_db(local_db, cur_db, local_freq, air_temperature) dist_db.append((max_dist, cur_db)) cur_db -= db_sim_step args = (source_point, obstacles, trees, 0, 0, dist_db) kwargs = { "reflection_n": reflection_n, "geometric_mean_freq_hz": local_freq, "tree_res": tree_res, "min_db": target_noise_db, "simulation_ind": ind, } task_queue.put((_noise_from_point_task, args, kwargs)) dead_area_dict[ind] = source_point.buffer(dead_area_r, resolution=2) noise_gdf = _recursive_simulation_queue( task_queue, dead_area_dict=dead_area_dict, dead_area_r=dead_area_r, use_parallel=use_parallel ) noise_gdf = gpd.GeoDataFrame(pd.concat(noise_gdf, ignore_index=True), crs=local_crs) polygons = gpd.GeoDataFrame( geometry=list(polygonize(noise_gdf.geometry.apply(polygons_to_multilinestring).union_all())), crs=local_crs ) polygons_points = polygons.copy() polygons_points.geometry = polygons.representative_point() sim_result = polygons_points.sjoin(noise_gdf, predicate="within").reset_index() sim_result = sim_result.groupby("index").agg({"noise_level": "max"}) sim_result["geometry"] = polygons sim_result = ( gpd.GeoDataFrame(sim_result, geometry="geometry", crs=local_crs).dissolve(by="noise_level").reset_index() ) return sim_result.to_crs(original_crs)
def _noise_from_point_task(task, **kwargs) -> tuple[gpd.GeoDataFrame, list[tuple] | None]: # Unpacking task point_from, obstacles, trees_orig, passed_dist, deep, dist_db = task def donuts_dist_values(dist_db, passed_dist, max_view_dist): new_dist_db = dist_db + [(passed_dist, None), (max_view_dist + passed_dist, None)] new_dist_db = sorted(new_dist_db, key=lambda x: x[0]) start = None end = None for i, (dist, db) in enumerate(new_dist_db[:-1]): if db is None: if start is None: new_dist_db[i] = (dist, new_dist_db[i - 1][1]) start = i else: new_dist_db[i] = (dist, new_dist_db[i + 1][1]) end = i + 1 break return [(dist - passed_dist, db) for dist, db in new_dist_db[start:end]] max_dist = max(dist_db, key=lambda x: x[0])[0] min_db = kwargs.get("min_db") reflection_n = kwargs.get("reflection_n") geometric_mean_freq_hz = kwargs.get("geometric_mean_freq_hz") tree_res = kwargs.get("tree_res") local_crs = obstacles.crs dist = round(max_dist - passed_dist, 1) obstacles = obstacles[obstacles.intersects(point_from.buffer(dist, resolution=8))] if len(obstacles) == 0: obstacles_union = Polygon() else: obstacles_union = obstacles.union_all() vis_poly, max_view_dist = get_visibility_accurate(point_from, obstacles, dist, return_max_view_dist=True) donuts_dist_values = donuts_dist_values(dist_db, passed_dist, max_view_dist) allowed_geom_types = ["MultiPolygon", "Polygon"] # Trees noise reduce reduce_polygons = [] if len(trees_orig) > 0: trees_orig = trees_orig[trees_orig.intersects(point_from.buffer(dist, resolution=8))] if len(trees_orig) > 0: try: trees = gdf_to_circle_zones_from_point(trees_orig, point_from, dist, resolution=tree_res) trees = trees.clip(vis_poly, keep_geom_type=True).explode(index_parts=False) except TypeError: trees = gpd.GeoDataFrame() for _, row in trees.iterrows(): tree_geom = row.geometry if tree_geom.area < 1: continue dist_to_centroid = tree_geom.centroid.distance(point_from) points_with_angle = [ ( Point(pt), round(abs(math.atan2(pt[1] - point_from.y, pt[0] - point_from.x)), 5), Point(pt).distance(point_from), ) for pt in tree_geom.exterior.coords ] p0_1 = max(points_with_angle, key=lambda x: (x[1], x[2])) p0_2 = min(points_with_angle, key=lambda x: (x[1], -x[2])) delta_angle = 2 * math.pi + p0_1[1] - p0_2[1] if delta_angle > math.pi: delta_angle = 2 * math.pi - delta_angle a = math.sqrt((dist**2) * (1 + (math.tan(delta_angle / 2) ** 2))) p1 = get_point_from_a_thorough_b(point_from, p0_1[0], a) p2 = get_point_from_a_thorough_b(point_from, p0_2[0], a) red_polygon = unary_union([Polygon([p0_1[0], p1, p2, p0_2[0]]).intersection(vis_poly), tree_geom]) if isinstance(red_polygon, GeometryCollection): red_polygon = max( ((poly, poly.area) for poly in red_polygon.geoms if isinstance(poly, (MultiPolygon, Polygon))), key=lambda x: x[1], )[0] if isinstance(red_polygon, MultiPolygon): red_polygon = red_polygon.buffer(0.1, resolution=1).buffer(-0.1, resolution=1) if isinstance(red_polygon, MultiPolygon): red_polygon = max(((poly, poly.area) for poly in red_polygon.geoms), key=lambda x: x[1])[0] if isinstance(red_polygon, Polygon) and not red_polygon.is_empty: red_polygon = Polygon(red_polygon.exterior) r_tree_new = round( tree_geom.area / (2 * dist_to_centroid * math.sin(abs(p0_1[1] - p0_2[1]) / 2)), 2 ) noise_reduce = int(round(green_noise_reduce_db(geometric_mean_freq_hz, r_tree_new))) reduce_polygons.append((red_polygon, noise_reduce)) noise_from_point = _eval_donuts_gdf(point_from, donuts_dist_values, local_crs, vis_poly) # intersect noise poly with noise reduce if len(reduce_polygons) > 0: reduce_polygons = gpd.GeoDataFrame( reduce_polygons, columns=["geometry", "reduce"], geometry="geometry", crs=local_crs ) all_lines = ( reduce_polygons.geometry.apply(polygons_to_multilinestring).tolist() + noise_from_point.geometry.apply(polygons_to_multilinestring).tolist() ) cutted_polygons = gpd.GeoDataFrame(geometry=list(polygonize(unary_union(all_lines))), crs=local_crs) cutted_polygons_points = cutted_polygons.copy() cutted_polygons_points.geometry = cutted_polygons.representative_point() joined = ( cutted_polygons_points.sjoin(noise_from_point, predicate="within", how="left") .drop(columns="index_right") .sjoin(reduce_polygons, predicate="within", how="left") .drop(columns="index_right") ) joined.geometry = cutted_polygons.geometry joined = ( joined.reset_index().groupby("index").agg({"geometry": "first", "reduce": "sum", "noise_level": "first"}) ) joined = gpd.GeoDataFrame(joined, geometry="geometry", crs=local_crs) noise_from_point = joined.copy() noise_from_point = noise_from_point.dropna(subset=["noise_level"]) noise_from_point["reduce"] = noise_from_point["reduce"].fillna(0) noise_from_point["noise_level"] = noise_from_point["noise_level"] - noise_from_point["reduce"] else: noise_from_point["reduce"] = 0 noise_from_point = noise_from_point[noise_from_point.geom_type.isin(allowed_geom_types)] noise_from_point = noise_from_point[noise_from_point["noise_level"] >= min_db] if deep == reflection_n: return noise_from_point, None if isinstance(vis_poly, Polygon): vis_poly_points = [Point(coords) for coords in vis_poly.exterior.coords] else: vis_poly_points = [Point(coords) for geom in vis_poly.geoms for coords in geom.exterior.coords] vis_poly_points = gpd.GeoDataFrame(geometry=vis_poly_points, crs=local_crs) # Generating reflection points vis_poly_points["point"] = vis_poly_points["geometry"].copy() vis_poly_points.geometry = vis_poly_points.geometry.buffer(1, resolution=1) vis_poly_points = vis_poly_points.sjoin(obstacles, predicate="intersects").drop(columns="index_right") vis_poly_points = vis_poly_points[~vis_poly_points.index.duplicated(keep="first")] vis_poly_points.dropna(subset=["absorb_ratio"], inplace=True) nearby_poly = point_from.buffer(1.1, resolution=2) try: vis_poly_points.geometry = ( vis_poly_points.difference(vis_poly).difference(obstacles_union).difference(nearby_poly) ) except GEOSException: return noise_from_point, None vis_poly_points = vis_poly_points[~vis_poly_points.is_empty] vis_poly_points = vis_poly_points[vis_poly_points.area >= 0.01] vis_poly_points["geometry"] = vis_poly_points["point"] vis_poly_points["dist"] = vis_poly_points.distance(point_from) vis_poly_points = vis_poly_points[vis_poly_points["dist"] < max_dist - 5] vis_poly_points = vis_poly_points.sjoin(noise_from_point, predicate="intersects", how="left") if len(vis_poly_points) == 0: return noise_from_point, None new_obs = pd.concat([obstacles, gpd.GeoDataFrame(geometry=[vis_poly], crs=local_crs)], ignore_index=True) # Creating new reflection tasks new_tasks = [] for _, loc in vis_poly_points.iterrows(): if not isinstance(loc.geometry, Point): continue new_passed_dist = round(loc.dist + passed_dist, 2) dist_last = max_dist - new_passed_dist if dist_last > 1: db_change = loc["reduce"] dist_change = loc["absorb_ratio"] * dist_last new_dist_db = [(dist - dist_change, db - db_change) for dist, db in dist_db] task_obs = new_obs.copy() task_obs.geometry = task_obs.difference(loc.geometry.buffer(1, resolution=1)) new_tasks.append( ( _noise_from_point_task, (loc.geometry, task_obs, trees_orig, new_passed_dist, deep + 1, new_dist_db), kwargs, ) ) return noise_from_point, new_tasks def _recursive_simulation_queue( task_queue: multiprocessing.Queue, dead_area_dict: dict, dead_area_r: int, use_parallel: bool ): results = [] total_tasks = task_queue.qsize() with tqdm(total=total_tasks, desc="Simulating noise") as pbar: if use_parallel: executor_class = concurrent.futures.ProcessPoolExecutor() else: executor_class = concurrent.futures.ThreadPoolExecutor() with executor_class as executor: future_to_task = {} while True: while not task_queue.empty() and len(future_to_task) < executor._max_workers: func, task, kwargs = task_queue.get_nowait() future = executor.submit(func, task, **kwargs) future_to_task[future] = kwargs["simulation_ind"] done, _ = concurrent.futures.wait(future_to_task.keys(), return_when=concurrent.futures.FIRST_COMPLETED) for future in done: simulation_ind = future_to_task.pop(future) result, new_tasks = future.result() if new_tasks: new_tasks_n = 0 local_dead_area = dead_area_dict.get(simulation_ind) new_dead_area_points = [local_dead_area] for func, new_task, new_kwargs in new_tasks: new_point = new_task[0] if not local_dead_area.covers(new_point): task_queue.put((func, new_task, new_kwargs)) new_dead_area_points.append(new_point.buffer(dead_area_r, resolution=2)) new_tasks_n += 1 dead_area_dict[simulation_ind] = unary_union(new_dead_area_points) total_tasks += new_tasks_n pbar.total = total_tasks pbar.refresh() results.append(result) pbar.update(1) time.sleep(0.01) if not future_to_task and task_queue.empty(): break return results